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Resumé : The study of shapes, as we would define them intuitively, involves working with
data which are intrinsically non-linear. Whether we are interested in analysing conformational
dynamics of a protein or we want to investigate the anatomical variability of an organ, the objects
we consider carry crucial information through their shapes. Various models were introduced in
the literature, depending on the application’s domain, giving rise to the field known as shape
analysis, at the interface of geometry and statistics. In landmark-based theories, the shape of an
object is determined by a set of well-chosen coordinates points located on the object [1]. Shapes
could also be described as deformation of one reference shape. In any of these representations,
invariance of the shape up to some transformations leads us to work with non-Euclidean structures
like differential manifolds. However, these kind of structures may have a complex geometry which
make computations way more difficult, adding up to the fact that data encountered in medicine or
biology are often high-dimensional. Therefore, in such domains, manifold learning and dimension
reduction are key problems.

Many manifold learning methods are based on the estimation of a local linear model. This is
particularly the case of LLE (Local Linear embedding [4]) or LTSA (Local tangent space approx-
imation [6]) which determine the local tangent spaces found by local PCA (Principal Component
Analysis). However, while the local linear assumption is sufficient in high data concentration, it
generates many errors when the data are in low concentration or non-homogeneously distributed.
It can arise for example when working with medical images of the brain which can not be acquired
often, or for protein simulations which take a long time to process. For local ”small data” learning,
it is thus necessary to regularise the estimates. Some works have sought to generalise the global
structure of the manifold by assuming spaces with constant curvature, as for example with MDS
(MultiDimensional Scaling [3]). Other methods seck to directly reconstruct the data on spheres
or hyperbolic spaces [5]. The current boom in of artificial intelligence also raises a new interest
for approximation by non-Euclidean spaces which still remain simple enough to be explanatory
and efficient.

In this talk, we introduce a new method for manifold learning, generalising the LLE algorithm [4]
to manifold-valued data. The first step of the LLE method consists in computing the barycentric
coordinates of each data point in the ambient space with respect to its k-nearest neighbours. If the
dataset consists of real-valued vectors, it is a classical least squares regression problem. We then
reconstruct the data in an embedding low-dimensional vector space by optimising the correspond-
ing coordinates of each point so that they match the previous barycentric coordinates. Again, this
is a least squares problem with explicit solution. Now suppose the data lie on some Riemannian
manifold. Barycentric coordinates are still defined, but cannot be written in closed form. There-
fore, the resulting minimisation problem cannot be solved explicitly, especially because the search
space is non-trivial. We propose to approximate the problem by a more reasonable one, exploiting
the Riemannian structure of our data space. At some point, our method requires to compute the
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parallel transport of the manifold in a differentiable way. This is certainly a constraining, however
crucial, condition. We implement the method for the specific case of Kendall shape spaces, for
which we have computations of the parallel transport compatible with automatic differentiation
[2]. At a later stage, we plan to generalise the second step of the algorithm to non-Euclidean
reconstruction spaces, minimising the squared distance of each point to the barycentric subspace
generated by its nearest neighbours. We thus obtain a non-linear weighted least squares criterion
which can be optimised on our embedding manifold by numerical gradient descent methods. We
expect our method to work better for data in low concentration, such that the local linear as-
sumption on which the classical LLE algorithm is based does not hold anymore. We also hope for
it to extend to more general manifolds apart from Kendall shape spaces.
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