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Resumé : Machine learning and data mining algorithms are becoming increasingly important in
analyzing large volume, multi-relational and multi-modal datasets, which are often conveniently
represented as multiway arrays or tensors. The main challenge in dealing with such data is the
so called curse of dimensionality, that refers to the need of using a number of degrees of freedom
exponentially increasing with the dimension.

This problem can be alleviated through various distributed and compressed tensor network for-
mats, achieved by low-rank tensor network approximations. The concept of compression of mul-
tidimensional large-scale data by tensor network decompositions can be intuitively explained as
follows. Consider the approximation of a d-variate function F (x) = F (x1, x2, ..., xd) by a finite
sum of products of individual functions, each depending on only one or a very few variables. In the
simplest scenario, the function F (x) can be (approximately) represented in the following separable
form

F (x1, x2, ..., xd) ≈ u(1)(x1)u(2)(x2) · · ·u(d)(xd)

In practice, when a d-variate function F (x) is discretized into a dth-order array, or a tensor,
the approximation above then corresponds to the representation by rank-1 tensors, also called
elementary tensors. Let us denote by Nn, n = 1, 2, · · · , d, the size of the discretization grid
associated to the nth variate.

The separation of variables principle can be achieved trough different tensor formats. In the
present work we will make use of two of them: the Canonical Polyadic and the Tensor Train
decompositions.

The Canonical Polyadic (CP) decomposition of F (see [2],[3]):
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where r is the CP rank.

The Tensor Train (TT) decomposition of F (see [4]):

F (x1, x2, ..., xd) ≈
r1∑

i1=1

...

rd−1∑
id−1=1

u
(1)
i1

(x1)u
(2)
i1,i2

(x2)u
(3)
i2,i3

(x3) · · ·u(d−1)
id−2,id−1

(xd−1)u
(d)
id−1

(xd)

where r1, . . . rd−1 are the TT ranks.



Congrès des Jeunes Chercheurs en Mathématiques Appliquées, Octobre 2021

The main advantages of the CP decomposition are its intuitive expression and its storage scaling.
Indeed, instead of the original cost of O(N d), the number of entries to store a CP representation
reduces to O(dN r), which scales linearly in the tensor order d and size N . The compression
of tensors using the CP is usually computed by means of the ALS (Alternating Least Squares)
method, which sometimes has some performance issues [1].

The Tensor Train format is probably one of the most used tensor formats in realistic applications
[5], due to a good trade off between optimality and numerical stability. However, the order of the
variables is fixed a priori. If the order of the variables is not good, the results could be exponen-
tially bad.

In this work, a method is proposed in order to compute an approximation of a given tensor as a
sum of Tensor Trains (SoTT), without fixing any parameter a priori : the order of the variates
and the values of the ranks can vary from one term to the other in an adaptive way, depending
on each tensor.

The numerical scheme is based on a greedy approximation algorithm and an adaptation of the
TT-SVD method. The intuition of the TT-SVD is that in every step a SVD is performed to detach
one open mode from the tensor. The TT-SVD starts by calculating an SVD of the matricization
of the initial tensor F , where all modes but the first one are combined. The resulting matrices are
each dematricized and the procedure is continued for a total of d− 2 steps.

The proposed approach in the particular case of a sum of rank-1 terms, can also be used in
order to compute an approximation of a tensor in a CP format, as an alternative to standard
fix-point based algorithms like Alternating Least Squares (ALS) or Alternating Singular Value
Decomposition (ASVD) methods, that present some numerical instabilities in high dimension.
Some numerical experiments are proposed, in which the method is compared to ALS and ASVD
methods for the construction of a CP approximation of a given tensor and performs particularly
well for certain families of high-order tensors. It also has been used as a recompression method
for solution of parametric PDEs. In addition, the interest of approximating a tensor as a sum of
Tensor Trains is illustrated in several numerical test cases, including some physical applications.
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