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1. Motivation: Riemannian spaces
� Solving the root-finding problem:

find θ P Θ satisfying hpθq “ 0 (1)

where Θ is a complete and connected Riemannian
manifold, TΘ is the tangent bundle, the mean-
field, h : Θ Ñ TΘ, is a smooth vector field.
� Our goals :
• approximate a solution iteratively  first-order

method.

• use the geometry of Θ  curved space.

• find convergence bounds & asymptotic results.

2. Presentation of the scheme

� SA scheme to approximate (1)  extension of the
Robbins-Monro algorithm for Riemannian mani-
folds [2, 1], for any n P N,

θn`1 “ ExpθntηHθnpXn`1qu ,

where:
• HθnpXn`1q “ hpθnq ` eθnpXn`1q is a noisy obser-

vation of h,

• EreθpX1qs “ 0 with a bounded second moment,

• η ą 0 is a step-size,

• pXnqnPN random i.i.d. process on pX,X q,
• θ‹ P Θ is a solution to (1),

‚ Exp : TΘ Ñ Θ is the
Riemannian exponen-
tial, roughly Expθpvq “
θ ` v.
‚ Extra assumptions
 regularity conditions
on e,

 Lipschitz gradient Lyapunov function V s.t.
1. }hpθq}2`C2xgradV pθq, hpθqyθ ď C1, i.e. ´gradV

and h are “close”,

2. xgradV pθq, hpθqyθ ď ´λV pθq1ΘzBpθ‹,rqpθq, i.e. h
points towards θ‹ when far from it.

� Special case h “ ´grad f corresponds to SGD op-
timization for a smooth f : Θ Ñ R.

3. The scheme is a Markov chain
� For any η ą 0, pθnqnPN is a time-homogeneous
Markov chain.
� Lyapunov conditions ` Taylor expansion gives

Theorem 1 (Ergodicity & stationary
measures)
There exists η ą 0 s.t. for any η P p0,ηs,
the Markov chain is geometrically er-
godic and admits a unique stationary
measure µη. In addition

lim
ηÑ0

µη d
“ δθ‹ ,

where δθ‹ is the Dirac mass on θ‹.4. Choosing the Lyapunov function

� For Euclidean spaces, e.g. Rd, typically V0 : θ ÞÑ
}θ ´ θ‹}

2. It is smooth, its gradient points to the
solution & is Lipschitz.

� Riemannian schemes cannot use ρ2
Θ as the Hes-

sian is not bounded  not Lipschitz gradient.
Instead, interpolate V0 with another function.

� Multiplying with a bump function χ on θ‹,

V2 : θ ÞÑ χpθqρ2
Θpθ

‹, θq ` p1´ χpθqqC .

� Linearizing V0, when far from θ‹ for some δ ą 0,

V1 : θ ÞÑ δ2tpρΘpθ
‹, θq{δq2 ` 1u1{2 ´ δ2 .

5. Variance estimation at equilibrium
� For SGD, we derive an expansion of the mean er-
ror at stationarity:

ż

Θ

}grad fpθq}2θdµ
ηpθq

“ pη{2qTr pHess θ‹f Σpθ‹qq ` opηq ,

where Σpθq is the covariance matrix of eθpX1q.
 The square norm of grad f is linear w.r.t. the step-
size η.

� Central limit theorem to find the rate of con-
vergence of pµηqηPp0,ηs. Assume:
• Θ is aHadamardmanifold, i.e. complete and sim-

ply connected, with non-positive curvature,
• eθpX1q has a finite moment of order 2` ε,

• a Taylor expansion of h at θ‹, roughly
hpθq “ Apθ‹ ´ θq ` op}θ‹ ´ θ}q.

Define a renormalized family of measures
pνηqηPp0,ηs by a factor η1{2, i.e. for any A P BpTθ‹Θq:
νηpAq “ µηpExpθ‹rη1{2Asq.

Theorem 2 (Central Limit Theorem)
The family pνηqηPp0,ηs converges weakly to Np0,Vq, where V is solution to the Lya-
punov equation

AV `VAJ
“ Σpθ‹q.

6. Applications

� SGD without boundedness conditions. Assume
• f twice continuously differentiable & Lipschitz gradient,

• f is λf -strongly geodesically convex.
 We obtain the exponential forgetting of the
initial condition, with Opηq oscillations:

E rfpθnq ´ fpθ‹qs ď p1´ ηλf {2q
n
rfpθ0q ´ fpθ

‹qs ` ηC . (2)

Fig. 1: Paths of the algorithm
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�With weaker assumptions, we study the distance-
like function D2

Θpθ1, θ2q “ ρ2
Θpθ1, θ2q{r1`ρ

2
Θpθ1, θ2qs.

‚ Assume f is geodesically quasi-convex:
´xExp´1

θ pθ
‹q, grad fpθqyθ ě λ̃fV1pθq ,

 Convergence as Op1{nq until Opηq oscillation:

n´1
řn´1
k“0 E

“

D2
Θpθ

‹, θkq
‰

ď 4V1pθ0q

M´

nηλ̃f

¯

` ηC . (3)

�We study & implement the Riemannian barycen-
ter problem: for a distribution π on Θ, minimize
fπ : θ ÞÑ p1{2q

ş

Θ
ρ2

Θpθ, νqπpdνq ,

 grad fπpθq “ ´
ş

Θ
Exp´1

θ pνqπpdνq .

Fig. 2: Paths of the algorithm
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Fig. 3 & 4: Size of oscillations w.r.t. the step-size η
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Monte-Carlo estimation at convergence

linear fit y = 25*x - 0.022

Norm of residuals = 3.17e-2
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Monte-Carlo estimation at convergence

linear fit y =0.11*x + 0.49

Norm of residuals = 7.59e-7

7. Experiments on the barycenter

On Θ “ Sym`50pRq Ă R50ˆ50, the SPD manifold.
‚ Discrete case: π “M´1

π

řMπ

i“1 δθi .
Apply (2), see Fig. 1 & 3.
‚ Continuous case: tame grad fπ by taking
HθpXq “ p1{2qExp´1

θ pX
p1qqtρ2

Θpθ,X
p2qq{2` 1u´1{2 ,

where Xp1q, Xp2q „ π are i.i.d. copies.
Apply (3), see Fig. 2 & 4.
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